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Abstract. We study the mean survival probabilityψ(n) at timen on a random one-dimensional
chain with perfect absorbers at 0 andL. The transition probabilitiesgi at the lattice sitesi,
are independent identically distributed random variables having the distributionp(gi) = 1 for

0 6 gi 6 1. We prove the asymptotic inequality,C1 6 ψ(n)n2

(logn)L−3 6 C2 whereC1 andC2 are

finite positive constants which depend on the lattice sizeL, but not onn. We confirm this result by
simulations for lattice sizes up toL = 17.

Diffusion and transport on disordered systems have been studied extensively since these serve
as models of many physical systems such as random field magnets, charged particle diffusion
when attached to a Brownian chain etc [1–5]. Some of the commonly studied quantities are
the mean and mean-squared distance travelled in timet , the return probability and the mean
survival probability in the presence of traps. Quite often one gets anomalous behaviour in such
systems. In a commonly studied problem on disordered lattices, one considers a discrete-time
random walk on a one-dimensional lattice with only the probabilities, at any site, of taking a
step to the right (or left) being random variables. Sinai [6] found that if〈lnp〉 = 〈ln q〉 where
p andq are, respectively, the probabilities to take a step to the right and left, the mean distance
travelled in timet is given by(ln t)2. For the asymmetric case,〈lnp〉 > 〈ln q〉, Derrida and
Pomeau [7] found that if〈q/p〉 > 1, the mean distanceR travelled in timet varies astx

wherex lies between 0 and 1. Bouchaudet al [5] have carried out a detailed analysis of the
continuous version of this problem. The mean survival probability in the presence of traps at
timet is another quantity of interest which has been widely studied. Here, one may distinguish
between various cases. The simplest case is that with uniform transition rates and with two
fixed traps a distancel apart. In this case the survival probabilityψ(t) goes as exp(−Dt/l2)
whereD, the diffusion coefficient, depends on the transition rates and the lattice spacing.
In a second kind of problem, the transition rates are uniform but the distribution of traps is
random. In this case, the quantity of interest is the disorder average of the survival probability.
Donsker and Varadhan [8] have solved the multi-dimensional problem rigorously and they
show that the survival probabilityψ(n) for aD-dimensional lattice is given asymptotically
by ln(ψ(n)) ∼ −a(ln(1/(1− c))2/(D+2)nD/(D+2). Here,a is a constant which depends on the
lattice andc is the concentration of traps.
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In this paper, we consider a third type of problem. This is the case of disordered transition
rates with two fixed traps at lattice points 0 andL, respectively. The probabilities for transition
at sitei aregi to the right (fromi to i + 1) and 1− gi to the left (fromi to i − 1). These
transition probabilities are themselves identically distributed independent random variables
with the probability distributionp(gi) = 1 for 06 gi 6 1 for i = 1, 2, . . . , L−2, L−1. For
the mean survival probabilityψ(n) at timen, we analytically prove the following asymptotic
inequality (valid for suficiently largen):

C1 6 ψ(n)n2/(logn)L−3 6 C2 (1)

whereC1 andC2 are finite positive constants which depend onL but not onn. We also
confirmed these results with simulations forL values ranging from 5 to 17. Note that the
distribution is symmetric and corresponds to the Sinai case.

The mean survival probability involves a double averaging; one over the random walks
and one over different realizations of the lattice. Formally,

ψ(n) =
∑
{gi }

∑
�n

P ({gi}, �n)X(�n, n). (2)

HereP({gi}, �n) is the joint probability of getting a realization with transition probabilities
{gi} and ann step random walk�n on this realization.X(�n, n) is an indicator function which
is equal to one if the particle survives up ton in random walk�n, and zero otherwise.

The method used in this paper originates from the work of Toth and Knight (see [9, 10]).
The basic idea used is that there is a one-to-one correspondence between the set of all
random walks and the sequence of right and left steps at each of the lattice points [9]. Let
�n = (x0, x1, . . . , xn) be a random walk ofn steps wherexj is the position of the random
walker at timej . We restrict our walk so that these will range fromi1 to i2 that isi1 6 xj 6 i2
for j = 0, 1, . . . , n, and there exist time stepsj1 andj2(16 j1, j2 6 n) such thatxj1 = i1 and
xj2 = i2. Now, the sequence(x0, x1, . . . , xn) uniquely specifies the sequence of steps (right
or left) at every lattice pointi(i1 6 i 6 i2). Conversely, if one specifies the initial point as
well as the total number of right and left steps and the order in which they occur at each of the
lattice pointsi1, i1 + 1, . . . , i2 one can obtain the unique sequence� = (x0, x1, . . . , xn). Not
all values ofri andli are, however, allowed. They have to satisfy some constraints. For the
casei1 6 x0 6 xn 6 i2 we have the following constraints:

li1 = 0 ri2 = 0

ri > 1 for i2 > i > x0

li > 1 for i1 < i 6 i0
i2∑
i=i1
(ri + li) = n

li = ri−1 for i1 < i 6 x0 and xn < i 6 i2
li = ri−1− 1 for x0 < i 6 xn.

(3)

To keep things simple, we consider the return probability (i.e. the probability that a particle
starting from lattice sitei0 is found ati0 aftern steps). We further taken to be even(= 2m),
since the particle can return to the place it started from only after an even number of steps.
The probabilityP(�n|{gi}) for obtaining a random walk�n given a realization with the set of
transition probabilities{gi} can be written as a product

P(�n|{gi}) =
i2∏
i=i1

Qi. (4)
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Qi is the probability for the steps starting from lattice sitei in the random walk�n in a
realization with the transition probabilities which aregi1, gi1+1, . . . , gi2. If the particle tookri
steps to the right andli to the left at sitei, then

Qi = grii (1− gi)li . (5)

Note that this probability is independent of the order in which the right and left steps were
taken. Since thegi are independent random variables, theQi can be independently averaged
over all realizations:

Q̄i =
∫
p(gi) dgiQi. (6)

In our case,p(gi) = 1 for 0< gi < 1. Therefore, we get

Q̄i = ri !li !

(ri + li + 1)!
. (7)

The total probabilityRi1,i2(�n, n) for the walk�n having a range fromi1 to i2 averaged over
all realizations is given by

Ri1,i2(�n, n) =
i2∏
i=i1

Q̄i . (8)

The total return probabilityR(n) of a particle starting fromi0 is given by

R(n) =
i0∑
i1=1

L−1∑
i2=i0

∑
�n

Ri1,i2(�n, n) (9)

where the sum over�n runs over all random walks which start fromi0 and return toi0 at the
nth step. Because (i) there is a one-to-one correspondence between then step random walks
and the sequence of steps at each of the lattice points, and (ii) the probabilityQi depends
only on the number of right and left steps ati and not on their order, the sum over�n may be
replaced by a sum over all possible values ofri1, ri1+1, . . . , ri2−1, which satisfy the constraints
of equation (3):

R1,L−1(n) =
∑
r1>1

· · ·
∑
rL−2>1

L−1∏
i=1

NiQ̄iδ

[ L−1∑
i=1

(ri + li)− n
]
. (10)

HereNi is the number of ways theri steps to the right andli steps to the left can be arranged.
If i is to the right ofi0, then the last step taken ati has to be to the left and therefore,

Ni = (ri + li − 1)!

(ri)!(li − 1)!
. (11)

Similar expressions can be written for sites to the left ofi0 as well asi0 itself:

NiQ̄i = (ri + li − 1)

ri !(li − 1)!

ri !li !

(ri + li + 1)!

= li

(ri + li)(ri + li + 1)
. (12)

Further, for the return probability we haveli = ri−1 for i = 2, 3, . . . , L−1. Using equation (12)
in (10), we get, for 26 i0 6 L− 2

R1,L−1(n) =
∑
r1

· · ·
∑
rL−2

1

(r1 + 1)

i0−1∏
i=2

ri

(ri−1 + ri)(ri−1 + ri + 1)
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× 1

(ri0−1 + ri0 + 1)

L−2∏
i=i0+1

ri−1

(ri−1 + ri)(ri−1 + ri + 1)

× 1

(rL−2 + 1)
δ

[ L−2∑
i=1

ri −m
]

(13)

where,m = n/2.
The probability of finding the particle at sitej given that it started fromi0 may be written

in a similar manner. We now obtain upper and lower bounds for the return probability.

Upper bound. We first obtain an upper bound for the termR1,L−1(n). Clearly, since
ri−1 + ri > ri , we obtain the following inequality from equation (13):

R1,L−1(n) 6
m∑
r1=1

· · ·
m∑

rL−2=1

1

(r1 + 1)

1

(r1 + r2 + 1)

× 1

(r2 + r3 + 1)
. . .

1

(rL−3 + rL−2 + 1)

1

(rL−2 + 1)
δ

[ L−1∑
i=1

ri −m
]

:= R1
L−1(n). (14)

Since we are interested only in asymptotics, we can convert the sums into integrals and the
Kronecker delta function to a Dirac delta function. Using the delta function to carry out the
integral overrL−2, we get

R1
L−1(n) =

∫ u1

1

∫ u2

1
· · ·
∫ uL−3

1
dr1 . . .drL−3

× 1

(r1 + 1)

L−4∏
i=2

1

ri−1 + ri + 1

1

(rL−4 + rL−3 + 1)

× 1

(uL−3 + 2)

1

(uL−2 + 1)
. (15)

Hereui is defined by

ui = m−
i−1∑
j=1

rj − L + 2 + i for i > 1

u1 = m− L + 1.

(16)

Clearly,

ui = ui+1 + ri − 1. (17)

The integral overrL−3 can, therefore, be written as∫ uL−3

1

drL−3

(rL−4 + rL−3 + 1)(uL−3− rL−3 + 2)
. (18)

After integration, we get

1

(uL−3 + rL−4 + 3)

[
ln
rL−4 + uL−3 + 1

rL−4 + 2
+ ln

uL−3 + 1

2

]
. (19)

The quantity inside the square parenthesis is6 2 log(m). Using this as well as equation (17),
and substituting the value of the integral overrL−3 in equation (15), we get

R1
L−1(n) 6 2 logm

∫ u1

1

∫ u2

1
· · ·
∫ uL−4

1
dr1 . . .drL−4
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× 1

(r1 + 1)

L−5∏
i=2

1

ri−1 + ri + 1

1

(rL−5 + rL−4 + 1)

× 1

(uL−4 + 4)

1

(uL−3 + 2)
. (20)

It is easy to see that the following inequality is, therefore, satisfied.

R1
L−1(n) 6 R1

L−2(n) · 2 logm. (21)

It is easy to show thatR4(n) 6 C(logm)/m2. Using this inequality with equation (21), we
get

R1
L−1(n) 6 C(logm)(L−3)/m2 for L > 4. (22)

NowR(n) is the return probability to sitei0. It is given by

R(n) =
i0∑
i=1

L−1∑
j=i0

Rij (n). (23)

There are less thanL2 terms in the sum and each is less than equal toR1,L−1(n). Therefore,
for large enoughn, we have forL > 4

R(n)m2

(logm)L−3
6 C. (24)

Lower bound. We first note that the termT containingri0 in equation (14) is

T = ri0

(ri0−1 + ri0 + 1)(ri0 + ri0+1)(ri0 + ri0+1 + 1)
. (25)

Now, we restrict the upper limit of integration for the variablesr1, r2, . . . , ri0−1, ri0+1, . . . , rL−2

tom/L. This will lead to an underestimate. Further, to satisfy the delta function constraint,
ri0 has to be greater thanm/L and, therefore, greater thanri0−1 as well asri0+1. Using this,
we can remove the integral overri0 as well as the delta function in equation (14) and write the
inequality

R1,L−1(n) >
1

m2

∫ m/L

1
· · ·
∫ m/L

1
dr1 . . .dri0−1 dri0+1 . . .drL−2

1

(r1 + 1)

×
i0−1∏
i=2

ri

(ri−1 + ri)(ri−1 + ri + 1)

×
L−2∏
i=i0+2

ri−1

(ri−1 + ri)(ri−1 + ri + 1)

1

(rL−2 + 1)
. (26)

This allows us to writeR1,L−1(n) as

R1,L−1(n) >
1

8m2
T1T2 (27)

where

T1 =
∫ m/L

1
· · ·
∫ m/L

1
dr1 . . .dri0−1

1

(r1 + 1)

i0−1∏
i=2

ri

(ri−1 + ri)(ri−1 + ri + 1)

T2 =
∫ m/L

1
· · ·
∫ m/L

1
dri0+1 . . .drL−2

L−2∏
i=i0+2

ri−1

(ri−1 + ri)(ri−1 + ri + 1)

1

(rL−2 + 1)
.

(28)
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We further restrict the range of integration as follows—inT1 the lower limit forri is raised to
ri−1 (for r1, it continues to be one). This allows us to write

ri

(ri−1 + ri)(ri−1 + ri + 1)
> 1

4(ri + 1)
. (29)

Using equation (29) in (28), we have

T1 >
∫ m/L

1

∫ m/L

r1

· · ·
∫ m/L

ri0−2

dr1 . . .dri0−1

i0−1∏
i=1

1

4(ri + 1)
. (30)

This leads us to the asymptotic inequality (we drop the terms of the type logL in comparison
to logm)

T1 >
logi0−1m

4i0−2(i0 − 1)!
. (31)

We can obtain a similar inequality forT2

T2 >
logL−2−i0 m

4L−3−i0(L− 3− i0)! . (32)

Combining equations (27), (31) and (32), we have, asymptotically,

R1,L−1(n)
m2

logL−3m
> C(L). (33)

Clearly the total return probabilityR(n) > R1,L−1(n). Combining equations (24) and (33),
we get for sufficiently largen

C1 6
R(n)n2

(logn)L−3
6 C2. (34)

Since the mean survival probabilityψ(n) consists ofL− 1 terms of the same order asR(n),
the result of equation (34) holds forψ(n) also.

Simulations. There are two averages involved in this problem—one over all realizations and
the second over random walks in a realization. Only the first part was done using simulations.
Having generated a realization, the average survival probability at any timen was obtained by
setting up the(L−1)× (L−1) transition probability matrixA and raising it to thenth power.
To reduce computations,n was restricted to values which were powers of two. A number of
realizations were generated and the average over all these obtained.

A source of difficulty in this problem is the fact that the major contribution comes from
only a very small fraction of the total number of realizations. To improve the statistics, we
used a biased sampling procedure for the realizations. The biasing scheme was as follows:

q(gi) = mgm−1
i 16 i < i0

q(hi) = mhm−1
i L− 1> i > i0

q(gi0) = 1

(35)

wherei0 is the starting point of the random walker,hi is the transition probability to the left
(from i to i−1) andq was the biased distribution. To get an unbiased estimate, the realizations
were given a weightw given by

w =
i0−1∏
i=1

1

gi

L−1∏
i=i0+1

1

q(hi)
. (36)
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Figure 1. Plot of ln(S∗(n)) versus ln(n) for a lattice of
size 5.

Figure 2. Plot of ln(S∗(n)) versus ln(n) for a lattice of
size 13.

The values used in the simulations form varied from 2 to 6. Two criteria were used to choose
them value for anyL: (i) the standard deviation should be minimal; and (ii) the mean should be
reasonably constant with changes inm around that value. The reason for using this particular
biasing scheme was to force the particle towards the centre. This artificially increases the
probability of those realizations which contribute to the quantity of interest. The number of
realizations generated varied from 107 to 108. The standard deviation over most of the range
varied from 5 to 10%.

Discussion. The results of the simulations forL = 5 and forL = 13 are given in figures 1 and
2. The quantity plotted isS∗(n) = ψ(n)n2/(ln n)L−3. We see that this quantity is reasonably
constant over a range ofn values varying by a factor of a few thousand which confirms the
conclusions of equation (34). Thus, unlike the case of the regular lattice where there is a
exponential decay, we have a power law decay. This is consistent with the highly sub-diffusive
transport in a Sinai lattice—the mean-squared distance travelled in timen goes as(logn)4

rather thann0.5. The basic reason for the behaviour in the diffusion problem as well as the
trapping problem on the Sinai lattice is that fluctuations produce deep potential wells in which
the particle gets confined for long periods of time. There is, however, a major difference
between the two cases. In the diffusion problem, (see [4, 5]) in almost every realization of the
lattice of lengthx there is a region with a barrier height of order

√
σx, whereσ is a quantity

which depends on the distribution of the transition probabilities. By the Arrhenius formula,
the timet taken to get out of this barrier is of order exp(

√
σx). Solving the resulting equation

for x yields the result that the mean squared distance travelled is∝ (ln(t))4. In the trapping
problem, on the other hand, the contribution to the mean survival probability comes only from a
very small fraction of the realizations. These realizations are such that the survival probability
is almost one in them. Even though the total probability of occurrence of these realizations is
quite small, they provide the dominant contribution to the result because of the high survival
probabilities.

In this paper we have derived the power law result for a specific probability distribution.
It is expected that a similar result will hold for all Sinai lattices whatever the distribution.
However, the actual exponent is likely to depend on the type of distribution of the transition
probabilities.
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